MARC details
000 -Encabezamiento |
fixed length control field |
02407cam a22002894a 4500 |
001 - Número de Control |
control field |
028049 |
005 - Fecha de Ultima Modificación |
control field |
20231009192529.0 |
008 - Elementos de Fongitud Fija--Información General |
fixed length control field |
092805s2005 nyua b 001 0deng |
010 ## - Número de Control de Biblioteca del Congreso USA |
Número de la Bibliografía nacional |
2005044123 |
020 ## - ISBN |
ISBN |
9780743258203 |
042 ## - AUTHENTICATION CODE |
Authentication code |
pcc |
050 00 - Número de Clasificación de la Biblioteca del Congreso de (USA-LC) |
No. de Clasificación |
QA174.2 |
No. del ítem |
.L58 2005 |
082 00 - Número de Clasificación Decimal Dewey |
No. de Clasificación |
512.2 LIV |
100 1# - Entrada Principal - Nombre Personal |
Nombre Personal |
Livio, Mario, 1945- |
245 14 - TÍTULO |
Título del material |
The equation that couldn't be solved |
Resto del Título |
: how mathematical genius discovered the language of symmetry |
Mención de responsabilidad |
/ Mario Livio |
260 ## - Publicación, Distribución, etc. (Pie de Imprenta) |
Lugar de Publicación, Distribución, etc. |
New York |
Nombre de la editorial, distribuidor, etc. |
: Simon & Schuster |
Fecha de Publicación, Distribución, etc. |
, c2005. |
300 ## - Descripción Física |
Extensión |
x, 353 p. |
Otros detalles físicos |
: ill. |
Dimensiones |
; 25 cm. |
504 ## - Nota de Bibliografía, etc. |
Nota de Bibliografía, etc. |
Includes bibliographical references (p. [309-332] and index. |
520 ## - Resumen, etc. |
Nota de resumen, etc. |
What do the music of J. S. Bach, the basic forces of nature, Rubik's Cube, and the selection of mates have in common? They are all characterized by certain symmetries. Symmetry is the concept that bridges the gap between science and art, between the world of theoretical physics and the everyday world we see around us. Yet the "language" of symmetry--group theory in mathematics--emerged from a most unlikely source: an equation that couldn't be solved.Over the millennia, mathematicians solved progressively more difficult algebraic equations until they came to what is known as the quintic equation. For several centuries it resisted solution, until two mathematical prodigies independently discovered that it could not be solved by the usual methods, thereby opening the door to group theory. These young geniuses, a Norwegian named Niels Henrik Abel and a Frenchman named Evariste Galois, both died tragically. Galois, in fact, spent the night before his fatal duel (at the age of twenty) scribbling another brief summary of his proof, at one point writing in the margin of his notebook "I have no time."The story of the equation that couldn't be solved is a story of brilliant mathematicians and a fascinating account of how mathematics illuminates a wide variety of disciplines. In this lively, engaging book, Mario Livio shows in an easily accessible way how group theory explains the symmetry and order of both the natural and the human-made worlds. |
600 10 - Entradas Secundarias - Nombre personal |
Nombre Personal |
Galois, Evariste |
Fechas asociadas con el nombre |
(, 1811-1832) |
650 #0 - Entradas Secundarias - Términos temáticos |
Tópico o nombre Geográfico |
Group theory |
Subdivisión general |
--History |
650 #0 - Entradas Secundarias - Términos temáticos |
Tópico o nombre Geográfico |
Galois theory |
Subdivisión general |
--History |
650 #0 - Entradas Secundarias - Términos temáticos |
Tópico o nombre Geográfico |
Symmetric functions |
Subdivisión general |
--History |
650 #0 - Entradas Secundarias - Términos temáticos |
Tópico o nombre Geográfico |
Symmetry (Mathematics) |
Subdivisión general |
--History |
650 #0 - Entradas Secundarias - Términos temáticos |
Tópico o nombre Geográfico |
Diophantine analysis |
Subdivisión general |
--History |
942 ## - TIPO DE MATERIAL |
Tipo de Material |
Libro - Monografía |